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Improvements to the two-dimensional radiation hydrodynamics method previously 
reported by Sandford and Anderson consist of an implicit, near-Lagrangian hydro- 
dynamics scheme and grey, implicit and nongrey, explicit S,, methods for radiation 
transfer. This paper presents as a test problem the radiative-hydrodynamic evolution 
of two coaxial hot bubbles in the terrestrial atmosphere. The nongrey Monte Carlo and 
nongrey S,, methods produce very similar radiative evolution. The calculations show 
that the lower bubble’s material is entrained by the ring vortex flow inside the top 
bubble, where mixing occurs. 

I. INTRODUCTION 

The equations governing the radiative and inviscous hydrodynamic flow of a 
gaseous medium in cylindrical geometry were given in our previous paper [I]. The 
basic equations that we address in this paper are unchanged; but we employ 
improved hydrodynamics, further discuss the application of the implicit Monte 
Carlo method, and present S,, methods that can be used to replace or to extend the 
Monte Carlo method. 

Improvements in the hydrodynamics result from our use of the YAQUI algo- 
rithm developed by Hirt, Amsden, and Cook [2]. This method results in less 
numerical diffusion and better numerical stability than the ICE algorithm [3] that 
we previously employed. The overall coupling of the hydrodynamics and radiation 
(REEFER) methods is complicated by the quadrilateral cell geometry that results 
from the near-Lagrangian form of the YAQUI algorithm. This geometry does not 
restrict the use of Monte Carlo radiation transport, but prevents application of the 
S,, method, because the latter is formulated in two dimensions for radially aligned 
mesh cells with rectangular [4] and triangular [5] cross sections. We therefore apply 
the former (MC) method for cases where numerical diffusion must be minimized 
through the use of distorted mesh cells; and we use the continuously rezoned 
Eulerian form of the YAQUI algorithm, together with the grey implicit or nongrey 
explicit S, methods, for cases where better radiative stability is needed. 
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The manner in which we divide a timestep of the fluid is now more complicated, 
although a computational cycle still consists of alternation between hydrodynamic 
and radiative flow. The total time step is 

At = max(Ll th , At,), (1) 

and is obtained by performing either one hydrodynamic timestep, At, , or one 
radiation timestep, At, , and subcycling the other calculation as necessary to 
complete the cycle. The hydrodynamic timestep is computed from the YAQUI 
stability conditions such that the maximum number of pressure iterations will 
approach 20 (cf. Hirt et al. [2, Eqs. (22), (23)]). The radiation timestep is found by 
evaluating the largest fractional change in mesh cell specific internal energy that 
occurred during the previous timestep, and adjusting the timestep to keep this 
change near 15 % for the next cycle. Thus we write for the radiative timestep: 

or 

blew = (0.1 SE/SE) stold ) (2b) 

where E is the internal energy in the cell that was found to have the maximum 
change, SE. Since the maximum specific internal energy change occurs in regions 
where the material opacity varies to cause cells to range from optically thick to 
thin, the timestep we compute via Eq. (2) approximates the timestep prescription 
that we previously employed (cf. [l, Eq. (23)]). The present formulation has the 
advantages of being simpler to calculate, and of guaranteeing an acceptable time- 
step. The timestep prescription based solely upon the material properties cannot 
always control the statistical energy variations that occur when the Monte Carlo 
method is employed. 

We find that global energy conservation to better than 10 % is difficult to obtain 
if we employ the temperature advancement equation (cf. [l, Eq. (15)]). The 
temperatures obtained in this manner are indeed correct; but the time-advanced 
cell energies require double interpolation from the equation of state, and con- 
sequently energy is not well conserved. We now utilize the scheme suggested by 
Fleck and Cummings [6, Eq. (1.17)], which time-advances the material energy. 
Temperatures are then found from the time-advanced energy and the density by 
inverting the equation of state tables. This procedure conserves material energy to 
about 1%. The temperature advancement scheme that we previously employed 
may, however, be superior for problems in which the mesh energy is largely 
contained in the radiation field; for other applications the energy scheme is 
preferred. 
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II. I~VI~LICIT RADt,4rtvE TRANSFER 

The implicit formulation of the radiative transfer problem introduces fictitious 
scattering which can often be handled to advantage by the Monte Carlo method [6]. 
The interaction between the statistical fluctuations inherent in Monte Carlo results 
and the hydrodynamic calculations can, however, produce nonphysical results. 
The S, transport method eliminates these fluctuations because it is a difference 
method, and hence produces continuous results if stability conditions are obeyed 
and sufficient order n is employed. The basic equations to be solved assume pure 
absorption and local thermodynamic equilibrium (L.T.E.) [I], and are directly 
solvable with the S, method. The scattering introduced by an implicit formulation 
complicates the application of the S, , but should result in a more advantageous 
timestep [I, p. 1371. 

The principal complexity in applying the S,, method in the implicit mode occurs 
in the nongrey problem which requires scattering in energy. The emission function 
(source term) in the equation of transfer takes the monochromatic form [ 1, Eq. (18)]: 

E,‘@‘, t) = 4+ loa dv’ $1” Zs (v’, v) I/“, da’ + crvvabvurn, (3) 

where I,,? = 1”: (r, SL’, t) is the specific monochromatic intensity at position r, in 
direction a’, at time P, for light with frequency v’; and u,, is the effective mono- 
chromatic absorption coefficient, b, is the normalized Planck frequency distribution, 
and u,” is the radiation energy density at timestep n at T. 

The scattering coefficient Zs appearing in Eq. (3) is given in terms of the implicit- 
ness parameter 01, the radiation derivative /3, and the Planck mean absorption 
coefficient oB , all of which are defined in Ref. [ 11. In the case where the implicitness 
parameter is chosen as zero, the first term on the right in Eq. (3) vanishes, and oVn 
becomes the real absorption coefficient. Thus, an explicit radiation calculation 
(a = 0) may be performed with the multigroup S, method applicable to pure 
absorption problems; this method was used to obtain the nongrey S, results of 
this paper. A partial or fully implicit (0 < 01 < 1) solution requires that the 
scattering of photons from one frequency group to another he considered; the 
Monte Carlo method is then especially advantageous because the photon frequency 
can simply be played as a random variable [l, 61. The implicit S, method is 
equivalent to that normally used for neutron problems with both scattering and 
absorption. 

To investigate the combination of YAQUI hydrodynamics with an implicit S, 
method, we have applied the latter in the grey atmosphere approximation. The 
frequency scattering is of course absent in this case, and the emission function, 
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obtained by integrating Eq. (3) with the aid of the definitions given in [l], becomes 

P(r, t) = jo= E,“(T, r) dv = c&,jo’” g jam a,,Z; dv’ + (1 - c;)& jm qB, dv (4) 
0 

-In 
= czoa J 

p dfi’ 
0 

x + (1 - Go) aB, (5) 

where u is the grey absorption coefficient, and the scattering albedo is defined [I] by 

w. = cipc Llt,a/(1 + ct!pc &a). (6) 

The S, method is thus required to iterate a grey source function that involves 
isotropic, nonconservative scattering-a task for which it is well suited [4]. In the 
explicit limit (a = 0) the scattering albedo is zero [Eq. (5)], and the grey emission 
function becomes that for pure absorption: 

l n@, t) = aB. (7) 

Many physical problems are not adequately represented by the grey atmosphere 
approximation. We find by comparison between grey S, solutions using Planck and 
Rosseland mean absorption coefficients and the other methods that the differences 
in the radiated power are often very significant, even though the differences in 
temperature structure are minor. Such conclusions depend on the behavior of the 
absorption coefficient with temperature and density, and the degree to which 
radiation couples with hydrodynamics. We therefore recommend that the investi- 
gator compare grey with nongrey solutions before discarding the former approxima- 
tion. 

There is a fundamental difference between the Monte Carlo and S, methods in 
the manner of mesh usage. The S, method assumes that the source function and 
opacity are both constant throughout each mesh cell, and calculates the intensity 
field by directly solving the equation of transfer across each cell. Provided the 
number of streams is sufficient, the net flux for each cell is very well determined. 
The accuracy of the results, insofar as the physical problem is concerned, depends 
upon the ability of the mesh to represent the material properties. The Monte Carlo 
method, on the other hand, allows the source function and opacity to vary across 
each mesh ceil according to a systematic procedure (interpolation) which in 
essence allows the material properties to connect continuously to those in the 
adjoining cells. The YAQUI hydrodynamics makes use of average properties over 
each cell, but when used in the near-Lagrangian mode (deformed cells) coupled to 
the Monte Carlo, one abtains an advantage in resolution as compared to the same 
number of cells used in the S,-Eulerian mode. The initial conditions used in these 
test problems all have the same grid spacing. 
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III. NUMERICAL EXAMPLE 

The radiative transfer process affects hydrodynamic motion by cooling hot 
regions, thus reducing the gas pressure gradients, and by heating cold regions, 
causing an increase in pressure. Hydrodynamic motion affects radiative cooling by 
changing the material density and, hence, effecting change in the opacity. Astro- 
physical and some other specialized applications consider problems in which the 
radiation energy density is so large that radiation pressure drives the hydrodynamic 
motion. Examples of such situations are the circumstellar dust envelopes of cool, 
giant stars and the extended atmospheres of close binary stars. 

Previously [I] we gave calculations that show the evolution of a 15-m-diameter, 
1-eV-temperature bubble in air. In this paper we compare the S, and nongrey 
Monte Carlo methods by solving two identical bubbles configured to display the 
advantages of YAQUI hydrodynamics. The Eulerian method used previously, and 
still required for application of the S, method, seriously diffuses signals in large 
cells. Thus, while Eulerian hydrodynamics efficiently calculates the evolution of a 
single, isolated bubble, the shock interactions that are introduced by considering 
a reflection boundary and a second coaxial bubble require more computing cells 
than are needed by a near-Lagrangian scheme. 

In this section we discuss the radiative and hydrodynamic evolution of two 
30-m-diameter, 1-eV-temperature bubbles that are initially coaxial on the vertical 
axis one diameter apart, with the lower bubble one diameter above a hydrodynamic 
reflection boundary. The equations of state and opacities are those for air; we use 
an exponential atmosphere, and the Earth’s gravitational acceleration is included. 
The lower reflection boundary (the ground) reflects hydrodynamic signals, and has 
zero albedo; i.e., it absorbs all incident radiative energy. The hot bubbles therefore 
provide the only radiation source in the problem. The radiant power is calculated 
from the outward fluxes that leave the computing mesh. The Monte Carlo cal- 
culation evaluates these fluxes by scoring the random variables (energy and photon 
frequency) of statistical particles that escape the mesh. The S, method calculates 
the fluxes by integrating the specific intensity (radiance) which is evaluated through- 
out the computing mesh. 

Solutions of the test problem presented in this section were obtained with the 
implicit, nongrey Monte Carlo, the implicit, grey S, , and the explicit, nongrey S, 
methods. The hydrodynamics scheme consists of the YAQUI algorithm reported 
in [2]; and this was used in the near-Lagrangian mode with the Monte Carlo 
calculations, and in the variable-mesh Eulerian mode with the S, solutions. 

The Monte Carlo radiation solution utilized 10 source particles in each cell with 
temperature above 0.05 eV, but a splitting algorithm prevents particles from 
terminating their histories if they retain more than 15 % of the minimum mesh 
cell internal energy. Source particles used in our numerical example numbered 
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approximately 1800 per timestep. The scattering albedo introduced by the implicit 
formulation results in about three collisions per particle. The computer code 
requires 10 msecl to complete the random walk for an average particle; and the 
complete radiation cycle requires about 60 set of computing time. The photon 
energy (frequency group) is played as a random variable in these calculations so 
that the computing time is independent of the number of frequency points that 
we use to describe the absorption coefficient. 

The S, calculations were performed with a code that is not yet fully optimized 
in assembly language to the CDC-7600 processor, but it appears that the S, 
calculations can be made to proceed about 10 times faster than the equivalent 
Monte Carlo solution. We find that 12 quadrature angles (S,> produce uniform 
flux corrections that do not display the ray effect. The scattering iterations demanded 
by the implicit formulation usually converge in less than 20 iterations. Neither the 
Monte Carlo nor the S, method is useful when employed in a code completely 
programmed in fortran because the running time for even simple problems such as 
the one discussed here is about 100 hr. The problem we present required about 
30 hr for the nongrey Monte Carlo solution and about 6 hr for the nongrey S, 
calculation, with a version that employs assembly language selectively in the areas 
that are most time consuming. 

The bubbles’ radiative cooling proceeds rapidly compared to the hydrodynamic 
evolution. The principal coupling between radiation and fluid flow occurs in the 
bubble centers which are first cooled by radiation and, later, by adiabatic expansion. 
Figure 1 shows the initial distributions of specific internal energy, density, and 
velocity in the computing mesh. 

Specification of the physical time appropriate to the initial conditions (Fig. 1) 
is difficult because the bubbles we use are nonphysical entities. The conditions that 
we show in Fig. 1 result in 0.28 TJ total energy. Our calculations begin with small 
(-0.1 msec) timesteps and evolve the bubbles forward in time. The mesh variables 
are relatively static until the “physical” time for the initial conditions is reached, 
and they then begin to evolve. Similar initial conditions could result from the 
explosive detonation of gas-filled balloons. 

We find that the radiative cooling is different than that obtained previously [l]. 
The bubbles in this problem do not show the cooling wave previously found. This 
phenomenon is strongly dependent on the air absorption data, and new values 
were used for the calculations presented here. Other calculations with the new data 
show that the cooling wave occurs in bubbles having higher initial temperatures, 
and at higher altitudes. 

The thermal power vs time curve in Fig. 2 shows that radiation begins to cool 

1 All calculations presented here were performed on the CDC-7600 computer using the LASL 
operating system (CROS). 
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FIG. 1. Initial conditions in the 50 x 100 cell computing mesh for two hot bubbles. (a) 
Specific internal energy in units of kJ;g at logarithmic contour intervals. (b) Density in units of 
mg/cm3 at logarithmic contour intervals. (c) Velocity vector plot scaled to the maximum value 
1 km/set. 

IO-+ D3 10e2 Id’ IO0 

Time (5) 

FIG. 2. Thermal power (upper curve) and maximum density (lower curve) vs time. 
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the bubbles, causing a noticeable decrease in radiated power at about 1.0 msec. 
The initial linear velocity profile snowplows air until a shock is formed at 12.5 msec; 
a similar result was obtained in the earlier calculations. This effect is seen in the 
gradual rise of the maximum density in Fig. 2. Comparison of the initial velocity 
plot in Fig. lc with Fig. 5a shows the shock structure. The air absorption coefficient 
in the bubble edge is especially sensitive to density, and a thermal power peak is 
seen in Fig. 2 at 7.5 msec when the shock formation begins. This peak is not seen 
in both S, calculations which, unlike the Monte Carlo, have opacity “rims” 
surrounding the bubbles. This opaque “rim” is attributed to the greater numerical 
diffusion in density that is present in the Eulerian hydrodynamics used with the 
S, methods. Figure 3 plots the temperature and density profiles calculated with 
near-Lagrangian, Monte Carlo methods in the upper bubble at 7.5 and 10.0 msec, 
and shows the bubble portion that contributes most of the thermal radiation. As 
the blast wave moves away from the hot bubble, the emission enhancement by 
density is removed and the pulse in the thermal power vs time curve decays. This 
is indicated as the “shock breakaway” portion of the thermal power curve (Fig. 2). 

Radiative cooling begins at 1.5-2.0 msec, at which time the bubbles are optically 
very thick, and ends at about 250 msec when the bubbles are optically thin. The 
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FIG. 3. Vertical profiles of temperature and density in the upper bubble at 7.5 and 10.0 msec. 
The shaded areas under the temperature curves indicate the regions that are effective in producing 
radiated power. 



288 SANDFORD ET AL. 

power time curve (Fig. 2) shows a change in mean slope at this time. The bubble 
cores cool uniformly without evidence of a cooling wave. The temperature gradient 
in the outer, optically thin layers remains constant during the cooling process. 
Figure 4 shows the cooling curve which plots the maximum (central) temperature 
vs time. The central Planck mean absorption coefficient is also plotted. The absorp- 
tion coefficient is an extremely sensitive function of the temperature, and it decreases 
rapidly as the cooling progresses. We find subsequent opacity oscillations that 
correspond with those in temperature (the first peak of opacity oscillation is shown 
in Fig. 4), and density (Fig. 2, lower curve). An optical signature in the thermal 
power curve results from these slight changes in temperature and density which are 
caused by shocks colliding. These oscillations in the thermal power occur in both 
the nongrey Monte Carlo and the grey and nongrey S, calculations. 

01 I III,,,! I I ,I ,,,I I I , , ,,I,, I , ,,,,,, 

IO 4 lO-3 lO-2 Id’ 10: 

Time (s) 

FIG. 4. Bubble cooling curve. The solid curve shows the maximum (central) bubble tem- 
peratures vs time. The dashed curve shows the concurrent values of the central absorption 
coefficient. 

At 20 msec the blast waves from the upper and lower bubbles collide, and that 
of the lower bubble strikes the ground. The thermal-power and maximum density 
curves (Fig. 2) show definite rises at this time, and both Monte Carlo and nongrey 
S, show these, as well as the later oscillations. 

We show in Fig. 5 a series of velocity vector plots that cover the interval 
10-100 msec; one sees that the hydrodynamic evolution begins with symmetry 
about a plane perpendicular to the z-axis, equidistant between the bubble centers. 
The plot at 40 msec shows that the expanding shocks collide between the bubbles 
and reflect from the symmetry plane. One reflected shock transits the upper bubble 
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distorting its bottom side, and the other moves downward through the lower 
bubble distorting its top side. The shock moving downward from the lower bubble 
reflects from the mesh boundary (the ground) and compresses the lower bubble 
from below. The colliding shocks produce triple points above and below the 
symmetry plane, and one also forms near the ground. These points (Mach stem 
ends [7]) propagate horizontally, and are seen from 60 to 100 msec in Fig. 5. The 
Mach stems are lost to numerical diffusion as they enter the larger mesh cells. 

The reflected ground shock collides with the shock reflected from above at the 
center of the lower bubble at about 50 msec (refer to Fig. 2). The subsequent 
evolution is complicated when the shocks compress the lower bubble. 

Fluid flow in the upper bubble is established as a clockwise vortex and upward 
along the z-axis. The shock distortion accelerates the buoyant vortex formation [I]. 
Figure 6 shows the computing mesh and contours of specific internal energy, 

FIG. 6. (a) The YAQUI computing mesh at 100 msec. (b) Logarithmic contours of specific 
internal energy in J/kg. (c) Logarithmic contours of density in mg/cms. (d) Contours of scalar 
vorticity. Stippling indicates regions of negative (clockwise) vorticity. 

density, and vorticity (defined by 1 V x v I) at 100 msec. The latter plot illustrates 
two countercirculation patterns in the lower bubble, and the negative vorticity 
that is usual in the formation of a toroidal flow field in the upper bubble. One notes 
the similarities of the negative vortices in the upper and lower bubbles. The isotherms 
and isopycnics show the severe distortion suffered by the lower bubble as a con- 
sequence of the blast wave reflected from above and below. 

Figure 7 displays surface plots of the specific energy and the total pressure in the 
computing mesh at 100 msec. The pressure plot illustrates that the individual blast 
waves coalesce during the 10-100 msec interval to form an expanding, ellipsoidal 
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FIG. 7. Surfaces of specific internal energy (left) and pressure (right) in the r-z computing 
mesh at 100 msec. The peak values are labeled in each plot. 

FIG. 8. Velocity vector plots at 2.0 and 3.5 sec. 
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shock with pressure peaks in the Mach stems. The blast wave is smoothed due to 
numerical diffusion in the larger mesh cells in the outer parts of the computing 
mesh (Fig. 6a). One notes in particular the softening of the shock above the upper 
bubble. Figure 7 also shows the pressure undershoot that occurs where the shocks 
collide and at the ground. 

During the interval 0.1-1.0 set the counterclockwise vortex in the lower bubble 
(Fig. 6d) becomes an inflection in the axial flow field. Figure 8 shows the flow at 
2.0 and 3.5 set, well after the blast wave’s departure. The flow at 2 set contains 
an “afterwind” moving inward toward the axis above the ground. This wind enters 
the clockwise vortex in the lower bubble. 

Axial flow consists of updrafts into the top bubble. There is an inflection in the 
flow field 16 m below the symmetry plane (64 m height) and 16 m from the axis. 
The largest wind speed is 18 m/set at 2 set, and occurs in the updraft. Stagnation 
points are seen at 72 m height on the axis and at 80 m height, 45 m from the axis, 
as well as at the two centers of clockwise vorticity. 

The counterclockwise vorticity decreases as the axial flow strengthens. Com- 
parison of the 3.5 set velocity vector plot with the 2.0 set plot shows that the 
vortices in the upper and lower bubbles decouple. Figure 9 displays the contours 
of specific internal energy, density, and vorticity at 3.5 sec. These show that the 

FIG. 9. (a) Logarithmic contours of specific internal energy in J/kg at 3.5 sec. (b) Logarithmic 
contours of density in mg/cm”. (c) Contours of scalar vorticity. Stippling indicates regions of 
negative (clockwise) vorticity. 



RADIATION HYDRODYNAMICS 293 

problem indeed evolves into two buoyant vortex rings, the lower one being tighter 
(more developed) than the upper one. 

Buoyancy causes the lower bubble to rise, and the flow field carries its material 
into the upper bubble’s vortex ring. At about 5 set the lower bubble’s vortex 
disintegrates and its material enters into the top vortex. Figure 10 shows plots of 
Lagrangian marker particles at 1 set intervals between 5 and 10 sec. The particles 
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FIG. 10. Iagrangian marker particles at l-set intervals from 5 to 1Osec. 
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were initially distributed uniformly to mark the bubble material inside each 
30-m-diameter sphere. The plot at 5 set shows the distortion in the upper bubble 
due to shock reflection and the buoyancy forces. The particles in the lower bubble 
are caught in the suction (updraft) of the top bubble, and by 10 set they are mostly 
entrained in the upper vortex. The particles are seen to mix toward the side, rather 
than to penetrate through the top of the ring as might be expected. 

IV. S,, CALCULATIONS 

The grey and nongrey S, methods described previously were also used to solve 
the radiative phases of the two-bubble test problem. Figure 11 shows the cooling 
curve obtained with the implicit, S, (12 streams), grey method and the curve shown 
previously in Fig. 7. The nongrey S, curve lies slightly below the Monte Carlo 
result. 

14 1 ill’, ,, , 
“i “” 1 ‘I ” 

FIG. Il. Cooling curves computed with nongrey, Monte Carlo (solid line) and grey, S,, (dots) 

Figure 12 shows vector plots of the net radiative flux in each computing cell at 
11.4 and 14.7 msec. These plots show the net fluxes as vectors whose components 
are the appropriate angular moments of the specific intensity [5]. At 11.4 msec the 
bubbles are optically thick and the fluxes maximize in the temperature gradient 
where radiative losses occur. The bubbles become optically thinner as the air 
cools, and the plot at 14.7 msec shows that all the cells contain outward fluxes. 
Thus, when the bubbles are optically thick, the cooling rate is governed primarily 
by the temperature gradient in the outer layers, and when the bubbles become 
optically thin, at later times, by the opacity in the bubble volume. 
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FIG. 12. Net radiative fluxes computed with the grey, S, method. 

V. DISCUSSION 

Near-Lagrangian hydrodynamics (YAQUI) offers advantages over the Eulerian 
hydrodynamics (SIERRA) that we used previously, but it complicates the radiative 
transfer calculations. The Monte Carlo method can usefully interface with distorted 
cells if one is careful to optimize the geometry routines so that computing time is 
minimized. The S,, method is successful in solving the implicit, grey equation of 
transfer; but it demands rectangular cell geometry. The S, and Monte Carlo 
methods are somewhat complementary in that we find regimes of application for 
each. We anticipate that a computational algorithm which couples the Monte Carlo 
and S, methods in different parts of the same mesh would be of limited use because 
of the difficulties in the energy (flux) conservation scheme. 

There remains the possible application of other iterative methods for solving 
the transfer equation which might give rapid, stable solution in optically thick, 
distorted cells. The Variable Eddington (VERA) or moment method does not 
appear useful because its rigorous application requires angular radiances to 
evaluate the moment equations. The radiances must be calculated with difference 
methods like S, , or the diffusion approximation used to obtain the moments 
directly. Thus, the method reduces to one like S,, or it dispenses with radiative 
transfer altogether. 
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